Dispersive estimates of solutions to the Schrödinger equation in dimensions n≥4

نویسنده

  • Georgi Vodev
چکیده

We prove dispersive estimates for solutions to the Schrödinger equation with a real-valued potential V ∈ L∞(R), n ≥ 4, satisfying V (x) = O(〈x〉−(n+2)/2−ǫ), ǫ > 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Counterexample to Dispersive Estimates for Schrödinger Operators in Higher Dimensions

In dimension n > 3 we show the existence of a compactly supported potential in the differentiability class C, α < n−3 2 , for which the solutions to the linear Schrödinger equation in R, −i∂tu = −∆u+ V u, u(0) = f, do not obey the usual L → L∞ dispersive estimate. This contrasts with known results in dimensions n ≤ 3, where a pointwise decay condition on V is generally sufficient to imply dispe...

متن کامل

Dispersive estimates for the Schrödinger equation in dimensions four and five

We prove optimal (that is, without loss of derivatives) dispersive estimates for the Schrödinger group e ) for a class of real-valued potentials V ∈ Ck(R), V (x) = O(〈x〉), where n = 4, 5, k > (n− 3)/2, δ > 3 if n = 4 and δ > 5 if n = 5.

متن کامل

F eb 2 00 6 Dispersive estimates of solutions to the wave equation with a potential in dimensions n ≥ 4

We prove dispersive estimates for solutions to the wave equation with a real-valued potential V ∈ L∞(R), n ≥ 4, satisfying V (x) = O(〈x〉−(n+1)/2−ǫ), ǫ > 0.

متن کامل

Dispersive Estimates for the Schrödinger Equation for C

We investigate L → L∞ dispersive estimates for the Schrödinger equation iut − ∆u + V u = 0 in odd dimensions greater than three. We obtain dispersive estimates under the optimal smoothness condition for the potential, V ∈ C(n−3)/2(Rn), in dimensions five and seven. We also describe a method to extend this result to arbitrary odd dimensions.

متن کامل

High frequency dispersive estimates for the Schrödinger equation in high dimensions

We prove optimal dispersive estimates at high frequency for the Schrödinger group for a class of real-valued potentials V (x) = O(〈x〉−δ), δ > n−1, and V ∈ Ck(R), k > kn, where n ≥ 4 and n−3 2 ≤ kn < n 2 . We also give a sufficient condition in terms of L 1 → L∞ bounds for the formal iterations of Duhamel’s formula, which might be satisfied for potentials of less regularity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Asymptotic Analysis

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2006